CHERRY CREEK BASIN WATER QUALITY AUTHORITY

2024-2033 CAPITAL IMPROVEMENT PROGRAM SUPPORTING DATA

TAC Draft – October 5, 2023 TAC Recommendation – November 2, 2023 Board Review Version – October 19, 2023 Board Final Version – November 16, 2023

2024-2033 CAPITAL IMPROVEMENT PROGRAM

This document presents the details of the 2024-2033 Capital Improvement Program (2024-2033 CIP), as reviewed by the Board with the 2024 funding included in the Budget that is adopted by the Board, and it includes the following information.

Table 1 – Summary of Potential Pollutant Reduction Facilities, Revision for 2024-2033 CIP.

This table lists all the Pollutant Reduction Facilities (PRFs) that have been considered for implementation by the Authority since 2000 and shows their status. The "blue" font represents completed projects, the "green" font represents projects that are included in the 2024-2033 CIP, and projects in "black" font have been considered but haven't been included in the CIP.

Prior to 2010, Cherry Creek Reservoir was under a total maximum annual load (TMAL) limitation for phosphorus. Since PRFs originally focused on reduction of phosphorus loads discharged into the reservoir, Table 1 was developed to provide a brief summary of the design basis, projected loads and treatment, estimated PRF costs, and costs per pound of phosphorus immobilized. Currently there is no TMAL; instead, the control strategy identified in Regulation No. 72 is to minimize nutrient (phosphorus and nitrogen) concentrations. Therefore, PRFs are still evaluated, in part, on their costs per pound of phosphorus for consistency between all potential PRFs. Additional information on how PRFs are evaluated, particularly stream reclamation type projects, is presented in the Authority's report dated June 17, 2011 titled *Stream Reclamation Water Quality Benefit Evaluation Interim Status Report*.

The Cottonwood Creek Cattail Harvesting Pilot Project (CCB-13.3.1 A and B) included phosphorus reduction and removed (59-60 pounds per year) from the system based on 2020 Cattail Harvesting Pilot Project Memo for a unit cost \$1,000-1,017 per pound of phosphorus removed.

New for the 2024-2033 CIP, ten of the completed projects (see blue text) were selected based on the best available accounting information on total project costs of design, construction, and permit clearance. Other information such as stream length and project participation were adjusted based on best available information, with the source included in comments which can viewed in of the spreadsheet itself. The Stream Reclamation O&M costs were adjusted to be similar cost baseline of \$6,000 per mile with a minimum of \$1,000 for projects within Cherry Creek State Park (higher cost accounts for higher public use in the park) and \$2,000 per mile with of minimum of \$1,000 for remaining stream reclamation projects. The original project information was retained, and the updated and revised project information was delineated by adding an asterisk (*) in the project designation and both were highlighted to facilitate comparison between the two.

New for the 2024-2033 CIP, the projects included in the CIP (see green text) the budget estimates of project costs were updated, based on similar projects that were bid in 2023 or updated engineer's opinions of construction costs, in an effort capture inflationary pressures and current market conditions.

Table 2 – Summary of Recommended Pollutant Reduction Facilities 2024 – 2033 CIP

This table lists the PRFs that are in the current 10-year CIP with more detail provided for the projects in the current budget year. Since the Authority partners with other governmental agencies to design and construct some of the PRFs, the Authority's portion of total project costs is also shown. The total cost is included along with the Authority's portion. Previous funding contributed by the Authority is deducted from the Authority's portion to get the Residual PRF Costs for the Authority, the Residual PRF Costs for the Authority are then budgeted through the 10-year CIP, since most projects take several years from concept through construction.

Some highlights of the projects included in the 2024 Budget are described below.

The East Shade Shelter Shoreline Stabilization Phase III (CCB-17.5.1) project includes funding participation from the latest Engineer's opinion of probable cost of 86% Authority and 14% is CPW to cover their participation in amenities. The actual costs and participation split will need to be determined through final design and construction and further coordination between parties.

The Tower Loop Shoreline Stabilization Phase II (CCB-17.7) project has been moved back to final design in 2032 and construction in 2033 based on value engineering effort done in 2023. The actual costs and schedule will need to be monitored and evaluated with future CIP updates.

The Cherry Creek Stream Reclamation at Arapahoe Rd., Reaches 3 and 4 (CCB-5.14C) project includes CCBWQA's funding at 16% (not the typical 25% partner project) to match the average of \$1,016 per pound of phosphorus immobilized from Table 3. Project costs and participation may be better defined through the upcoming design and evaluated further with future CIP updates.

The Cherry Creek – Reservoir to Lake View Drive Alternatives Analysis and Development of Preferred Alternative (CCB-5.16A) project includes CCBWQA's funding of 100%.

The Cherry Creek all Reached in CCSP (CCB-5.16A, B, C) line includes CCBWQA funding \$7,650,000 over 10-years. It represents a funding stream that can be applied to projects as their costs and priorities and further identified and refined through current and upcoming design efforts. Currently, the Cherry Creek – Reservoir to Lake View Drive is considered the top priority; after the development of the preferred alternative and its associated costs will determine how far this funding will go. Additional project partners and funding from others will likely be needed in order to complete all of the stream reclamation on Cherry Creek within Cherry Creek State Park (CCSP).

The Piney Creek Reaches 1 to 2 (CCB-6.5) project includes CCBWQA's funding at 23% (not the typical 25% partner project) to match the average of \$1,016 per pound of phosphorus immobilized from Table 3. Project costs and participation may be better defined through upcoming design and evaluated further with future CIP updates.

The Piney Creek Reaches 4 to 5 (CCB-6.6) project includes CCBWQA's funding at 23% (not the typical 25% partner project) to match the average of \$1,016 per pound of phosphorus immobilized from Table 3. Project costs and participation may be better defined through upcoming design and evaluated further with future CIP updates.

The McMurdo Gulch Reclamation (CCB-7.4) includes CCBWQA's funding of 25% as it is a partner project and is for priority 3 stream reclamation. As requested by Castle Rock, it includes \$1,121,000 of CCBWQA for 2024, of which \$869,000 is new funding included in CCBWQA's 2024 budget, and \$252,000 of CCBWQA's unspent funding that was left over after the completion of priorities 1 and 2 stream reclamation. This information will need to be evaluated by CCBWQA when drafting the Intergovernmental Agreement between the parties, and when it is considered for action by CCBWQA's Board.

The Lone Tree Creek in CCSP downstream of Pond, CCBWQA only (CCB-21.1) project includes CCBWQA funding of 100%. This funding is only for the stream reclamation portion downstream of the pond and embankment only. The scope and cost of the project will need to be reevaluated based on completion of the Major Drainageway Planning Study that is currently underway. Additional improvements and partner funding may be needed as a result of this study.

The Lone Tree Creek in CCSP upstream of Pond, Centennial Trail Portion (CCB-21.3) project is done in conjunction with Centennial Trail Project. CCBWQA's funding is at 25% (not the typical 100% for projects within CCSP) and is for the stream reclamation portion of the larger trail project. The trail portion advanced the stream reclamation portion ahead of its water quality priority, limiting the funds available for the project. CCBWQA's Board has previously taken action to confirm the \$112k commitment to Centennial so it has been included in the 2024 Budget.

CCBWQA's funding on Happy Canyon Creek at Jordan Rd/ (CCB-22.1) is at 25% and continues the funding that was previously requested by SEMSWA.

CCBWQA's funding on PRF Preservation, Acquisition, Lease of Land or Water is budgeted for \$100k and CCBWQA's percentage is not known as no project and costs have been identified.

All other projects listed in the CIP were coordinated with project partners and adjusted based on input and direction received. Further evaluation and adjustments will likely be needed in future CIP updates when projects get closer to the current budget year.

2024 Operations and Maintenance Budget

The projects and costs from 2023 Annual Inspection of PRFs at CCSP Task Memorandum by RG and Associates were included in the CIP for 2024. The RDS Utilities Costs were increased from \$65,000 to \$72,000, PRF Reseeding of \$5,000, PRF Mowing of \$5,000, Tree/Shrub Planting of \$2,000, and Fence Repair of \$8,000 were included at the direction of the Technical Manager and to match the 2024 Budget.

Table 3 – Summary of 10 Completed Pollutant Reduction Facilities for Consideration in 2024 – 2033 CIP

From Table 2, the ten completed projects with the updated and revised project information, delineated by adding an asterisk (*) in the project designation, were adjusted to 2023 costs using ENR's Building Cost Index. Three unit costs were developed for the stream reclamation cost per mile and the cost per pound of phosphorus immobilized (without or with cost sharing from

partners). Figure 1 shows the stream reclamation cost per mile and Figure 2 shows the cost per pound of phosphorus immobilized (without or with cost sharing from partners).

Summary statistics are included at the bottom of Table 2 of CIP and below. The mean of \$4,064 per pound of phosphorus (without cost sharing) or \$1,016 per pound of phosphorus (with cost sharing of 75% partner participation and 25% CCBWQA participation) were used to evaluate projects included in the 10-year CIP (see green text) in Table 1. When the calculated cost per pound of phosphorus exceeded these means then a more detailed method was used to calculate it, delineated with a pound sign (#) in the project designation, or CCBWQA's participation was adjusted down to get the cost per pound in alignment with the mean. As the projects move forward and more detailed costs and engineering information is available the projects that were adjusted can be further evaluated, to see whether additional funding from CCBWQA is warranted, and updated as needed in future CIPs.

Statistic	Stream Reclamation Cost per mile	\$/pound of phosphorus (w/o cost sharing)	\$/pound of phosphorus (w/ CCBWQA participation at historical limit of 25%)
Minimum =	\$ 3,145	\$ 1,890	\$ 472
Maximum =	\$ 13,840	\$ 8,292	\$ 2,073
Mean =	\$ 6,771	\$ 4,064	\$ 1,016
Median =	\$ 6,759	\$ 4,053	\$ 1,013
Standard Deviation =	\$ 3,581	\$ 2,137	\$ 534

E F G H I J K L M N O P Q R CHERRY CREEK BASIN WATER QUALITY AUTHORITY S T U V TABLE 1 - SUMMARY OF POTENTIAL POLLUTANT REDUCTION FACILITIES

REVISIONS FOR 2024 - 2033 CIP

Project Completed Planned for design/construction within 10-year CIP (see Table 2)

1	A	В	C	D	E	F	G	Н	I	J	К	L CHEF	M RRY CREEI	N K BASIN		P TER OLIALI	Q ITV AUTH	IORITY	R S	T	U		V	W	Х	Y		Z	AA
2								TA	IBLE	E 1 - S						-			TION FACILITIE	ES .									
3													REVIS	IONS	FOR	2024 - 2	033 CIP	•											
4		Date:	November 2, 2023																										
4 5		Color Code:	Blue:	Project Completed																									
6			Green:	Planned for design/construction v Project updated based on best av				· ·	ountin	a inform	ation th	at inch	ides total pro	iect costs	ofder	ion constru	uction const	ruction	management and permit	clearance O	ther info	rmation s	ich as stra	aam lanath wa	e adjusted b	ased on ir	nformation	noted in co	mments on
7			*	spreadsheet. O&M costs were a																				cann iongtii wa	is adjusted ba	aseu on n	normation i	loted in con	linents on
8			#	Site specific analysis used for pro-	oject to s	support CO	CBWQA's fi	unding level																					
9				Projects highlighted so that origin	nal projec	ct informa	tion compar	red with upda	ated pr	oject info	ormatio	n (deno	oted with *).																
<u>10</u> 11																													
	Proj.	Project Title	Status	Description		De	sign Basis			P	rojected	Loads		Proje	cted Tr	eatment				Cost Est (1000							Unit Cost (\$/pound)		Note
12	Designation						-		n	.	T				lbs		~		Water	Capital	Í	Ann	ual Cost @	CCBWQA	CCBWQA	w/o co	ost		
13				PRF Type	Quantity		Rate	Volume	к	ate	To		Source	Removal	ved		Capital		Acquisition Augment ⁸	Replace ⁹	0&1	м	4%	Share (%)	Share (\$)	sharin	ng w/cost	t sharing	
14	(1) CCR-1		(3)	(4) Use inlake mixing to minimize algae	(5) 369	(6)	(7)	(8)	,	(9)	,	(10)	(11)	(12)	(13) 810	(14)	(15) \$ 96		(16) (17)	(18)	(19		(20)	(21)	(22)	(23)	99 \$	99	(25)
15		Reservoir Destratification (mixing)	Officially start-up April 2008 Prelim design prepared in 2003	blooms, therefore chlorophyll a Restore 60 Acres of wetlands in		sq mi	n/a 3.5 cfs avg	n/a 1415 af/210	n/a		n/a		n/a			lbs/season	• • • •	-			\$	28 \$	80	100%	\$968	\$	<i>,,</i> ,		
16	CCB-1	CCSP Wetlands Arapahoe/Douglas County Line	(Ref 1, 8) Project completed w/o Authority	multiple phases Local stream stabilization	369	sq mi	daily flow	days	0.35	mg/l	1050	lbs/yr	Base flow		600	lbs/season	\$ 1,92		- \$ -	\$ -	\$	19 \$	123	100%	\$1,928		204 \$	204	18
17	CCB-5.2	Stream Stabilization	participation	(L = 2700 ft)	0.51	mi			100	lbs/mi	51	lbs/yr	Storm Flow	90%	46	lbs/year	\$ 1,06	2 \$	- \$ -	\$ -	\$	1 \$	58	0%	\$0	\$ 1.	,258 \$	-	2
18	CCB-5.3	Cottonwood Bridge Stream Stabilization	Project completed by Parker w/o Authority participation	Local stream stabilization (L = 2700 ft)	0.51	mi			100	lbs/mi	51	lbs/yr	Storm Flow	90%	46	lbs/year	\$ 43	6 \$	- \$ -	s -	\$	2 \$	25	0%	\$0	\$	551 \$	-	2
19	CCB-5.5	Stroh Road Stream Stabilization	Project completed by Parker w/o Authority participation	Stream stabilization (L = 5000 ft)	0.95	mi			100	lbs/mi	95	lbs/yr	Storm Flow	90%	85	lbs/year	\$ 21	8 \$	- \$ -	s -	\$	1 \$	13	0%	\$0	\$	149 \$	-	2
	CCB-5.7	Cherry Creek Stream Stabilization at Eco-Park (SEMSWA)	IGA w/SEMSWA for design in 2010 and construction in 2011/2012	Local stream stabilization	1.30	mi			100	lbs/mi	130	lbs/yr	Storm Flow	90%	117	lbs/year	\$ 4,75	6 \$	- s -	s -	\$	1 \$	256	24%	\$1,155	\$ 2,	,191 \$	532	2, 3
20		Cherry Creek Stream Stabilization at		(L = 6850 ft) Local stream stabilization														-											
21	CCB-5.7*	Cherry Creek Stream Stabilization at Eco-Park (SEMSWA)	IGA w/SEMSWA for design in 2010 and construction in 2011/2012	(L = 4850 ft)	0.92	mi			100	lbs/mi	92	lbs/yr	Storm Flow	90%	83	lbs/year	\$ 4,75	6 \$	- \$ -	\$ -	\$	2 \$	257	19%	\$905	\$ 3,	,106 \$	591	2, 3, 7
	CCB-5.9.1		Design completed in 2011 for Phase	Local stream stabilization	0.09	mi			100	lbs/mi	9	lbs/yr	Storm Flow	90%	9	lbs/year	\$ 29	6 5	- 5 -	\$.	s	1 \$	17	100%	\$296	\$ 1	,979 \$	1,979	2, 20
22	CCB 5.5.1	12-Mile Park (CCSP) - Phase I	I.	(L = 500 ft)	0.05				100	103/111	ĺ	10 <i>3</i> / yi	Storin Piow	2070	Í	105 year	5 2)			3	9		17	10070	5270	φ 1,		1,979	2,20
	CCB-5.9.2	Cherry Creek Stream Stabilization at 12-Mile Park (CCSP) - Phase II	Design completed in 2013 for Phase	Local stream stabilization ($L = 2500 \text{ ft}$)	0.47	mi			100	lbs/mi	47	lbs/yr	Storm Flow	90%	43	lbs/year	\$ 1,42	9 \$	- \$ -	s -	\$	1 \$	78	100%	\$1,429	\$ 1,	,820 \$	1,820	2, 20
23		Cherry Creek Stream Stabilization at	Design completed by PJMD.	Local stream stabilization														+									<u> </u>		
24	CCB-5.10	PJCOS (Vermillion Creek, PJMD.)	Authority is funding partner in design	(L = 5100 ft)	0.97	mi			100	lbs/mi	97	lbs/yr	Storm Flow	90%	87	lbs/year	\$ 3,01	7 \$	- \$ -	\$ -	\$	2 \$	164	21%	\$643	\$ 1,	,882 \$	401	2, 3
	CCB-5.11	Cherry Creek Stream Stabilization at	Conceptual design by UDFCD	Local stream stabilization	0.42	mi			100	lbs/mi	42	lbs/yr	Storm Flow	90%	38	lbs/year	\$ 90	0 \$	- s -	s -	s	1 \$	49	28%	\$252	\$ 1.	,313 \$	368	2, 3
25		Norton Farms (Parker)	identified priority 3	(L = 2200 ft)								5				-					-						<u> </u>		
26	CCB-5.11*	Cherry Creek Stream Stabilization at Norton Farms (Parker)	Conceptual design by UDFCD identified priority 3	Local stream stabilization (L = 2500 ft)	0.47	mi			100	lbs/mi	47	lbs/yr	Storm Flow	90%	43	lbs/year	\$ 1,10	3 \$	- \$ -	s -	\$	1 \$	60	23%	\$255	\$ 1,	,410 \$	326	2, 3
27	CCB-5.12	Cherry Creek Stream Stabilization at Pine Lane	Project completed by Parker w/o Authority participation	Local stream stabilization ($L = 1500 \text{ ft}$)	0.28	mi			100	lbs/mi	28	lbs/yr	Storm Flow	90%	26	lbs/year	\$ 50	0 \$	- \$ -	s -	s	1 \$	28	0%	\$0	\$ 1	,087 \$	-	
	CCD 5 14	Cherry Creek Stream Reclamation -	IGA w/SEMSWA for design in	Local stream stabilization	2.08				100	n / ·	200		G, F1	000/	100	n (e 10.20		- \$ -	¢	6	1 \$	647	25%	62.400			715	
28	CCB-5.14	CCSP to Eco Park (Ph II to V)	2010	(L = 11000 ft)	2.08	mi			100	lbs/mi	208	lbs/yr	Storm Flow	90%	188	lbs/year	\$ 10,20	0 \$	- 2 -	ъ -	2	1 \$	547	25%	\$2,499	\$ 2	\$,920	715	
	CCB-5.14B	Cherry Creek Stream Reclamation - Valley Country Club	Projects with UDFCD, SEMSWA, and Aurora. Phases started in 2010.	Local stream stabilization (L = 2000 ft.=1400 ft on Cherry Creek	0.38	mi			100	lbs/mi	38	lbs/yr	Storm Flow	90%	34	lbs/year	\$ 2,28	4 \$	- s -	s -	\$	1 \$	123	21%	\$484	\$ 3.	,607 \$	764	2, 3
29				and 600 ft. on Tributary)																									
20	CCB-5.15	Cherry Creek Stream Reclamation at Country Meadows (Hess Rd)	Project by Town of Parker and Douglas County	Local stream stabilization (L = 7700 ft)	1.46	mi			100	lbs/mi	146	lbs/yr	Storm Flow	90%	131	lbs/year	\$ 2,17	0 \$	- \$ -	s -	\$	2 \$	118	24%	\$520	\$	901 \$	216	2, 3
30	CCD 5 15*	Cherry Creek Stream Reclamation at	Project by Town of Parker and	Local stream stabilization	0.00				100	lbc/m	80	lb-/	Storm F1	0.00/	72	lbg/see	¢ 0.50	0 0	e	s	s	2 6	151	250/	6605		114 0	527	2 2 7
31	CCB-5.15*	Country Meadows (Hess Rd)	Douglas County	(L = 4200 ft)	0.80	mi			100	lbs/mi	80	lbs/yr	Storm Flow	90%	72	lbs/year	\$ 2,78	8 \$	- \$ -	3 -	3	2 \$	151	25%	\$695	\$ 2,	,114 \$	527	2, 3, 7
	CCB-5.16	Cherry Creek Stream Reclamation - 12 Mile Phase III	Project w/in CCSP identified as Reach 1 in Project CCB-5.14 work.	Local stream stabilization $(L = 30 \text{ ft}_{2})$	0.01	mi			100	lbs/mi	1	lbs/yr	Storm Flow	90%	1	lbs/year	\$ 30	0 \$	- \$ -	s -	\$	3 \$	19	100%	\$300	\$ 37,	,299 \$	37,299	2, 20
32		Cherry Creek Stream Reclamation at	Prelimiinary design completed 2019,	Local stream stabilization																									
33	CCB-5.17.1A	KOA	Extension Requested by UDFCD and Parker in 2019	(L =1400 ft original, L=2000 ft with 600 ft extension)	0.38	mi			100	lbs/mi	38	lbs/yr	Storm Flow	90%	34	lbs/year	\$ 2,03	5 \$	- \$ -	\$ -		20 \$	129	20%	\$375	\$ 3	,795 \$	776	2, 3
	CCB-5.17.1A*	Cherry Creek Stream Reclamation at	Prelimiinary design completed 2019, Extension Requested by UDFCD	Local stream stabilization (L =1400 ft original, L=2000 ft with	0.38	mi			100	lbs/mi	38	lbs/yr	Storm Flow	90%	34	lbs/year	\$ 1,80	6 \$	- s -	s -	\$	1 \$	98	18%	\$333	\$ 2.	,868 \$	529	2, 3, 7
34		KOA Cherry Creek Stream Reclamation at	and Parker in 2019 Design in 2021, Construction in	600 ft extension) Local stream stabilization																									
35	CCB-5.17.1B	Dransfeldt Piney Creek Stream Stabilization -	2023 Authority funded \$118,000	(L =2400 ft original) Restore 5200 lf upstream of Parker	0.45	mi			100	lbs/mi	45	lbs/yr	Storm Flow	90%	41	lbs/year		4 \$	- \$ -	\$ -	\$	1 \$	391	12%	\$837		,551 \$	1,099	2, 3
36	CCB-6.1	Project 1	Arapahoe County in 2002.	Road	22.90	sq mi	n/a	n/a	100	lbs/mi	100	lbs/yr	Storm Flow	90%	90	lbs/year	\$ 99	7 \$	- \$ -	\$ -	\$	10 \$	63	13%	\$130	\$	705 \$	92	2, 3
37	CCB-6.2	Piney Creek Stream Stabilization - Project 2 U/S Buckley Rd	Project completed w/o Authority participation	Reclaim 1700 lf upstream of Buckley Road	0.32	mi			100	lbs/mi	32	lbs/mi	Storm Flow	90%	29	lbs/year	\$ 99	8 \$	- \$ -	\$ -	\$	1 \$	54	12%	\$120	\$ 1,	,880 \$	226	2, 3
38	CCB-6.4	Piney Creek Stream Reclamation - Reachs 6 & 7	Request from UDFCD in 2014	Local stream stabilization (L = $6,000 \text{ ft}$)	1.14	mi			unk		365	lbs/yr	Storm Flow	90%	329	lbs/year	\$ 11,00	0 \$	- \$ -	s -	\$	2 \$	591	25%	\$2,750	\$ 1,	,800 \$	450	12
39	CCB-6.4A *	Piney Creek Stream Reclamation - Reach 7	Request from UDFCD in 2014	Local stream stabilization ($L = 2,340$ ft)	0.44	mi			100	lbs/mi	44	lbs/mi	Storm Flow	90%	40	lbs/year	\$ 3,76	5 \$	- \$ -	s -	\$	1 \$	203	14%	\$512	\$ 5,	,082 \$	691	2, 3, 7
40	CCB-6.4B.1 *	Piney Creek Stream Reclamation - Reach 6 upstream of Caley	Request from UDFCD in 2014	Local stream stabilization ($L = 1,600 \text{ ft}$)	0.30	mi			100	lbs/mi	30	lbs/yr	Storm Flow	90%	27	lbs/year	\$ 2,89	6 \$	- \$ -	s -	\$	1 \$	156	14%	\$394	\$ 5,	,726 \$	779	2, 3, 7
	CCB-6.4B.2 *	Piney Creek Stream Reclamation -	Request from UDFCD in 2014	Local stream stabilization	0.49	mi			100	lbs/mi	49	lbs/yr	Storm Flow	90%	44	lbs/year	\$ 265	9 \$	- s -	s -	s	1 \$	143	14%	\$361	5 7	,262 \$	443	2, 3, 7
41		Reach 6 Phase 2	*	(L = 2,580 ft)								105/ yr									ę								2, 3, 1
42	CCB-7.1	McMurdo Gulch Reclamation (Castle Rock)	Project completed in 2011	Stream Reclamation (L = 15,000 lf)	2.84	mi			100	lbs/mi	284	lbs/yr	Storm Flow	90%	256	lbs/year	\$ 1,47	0 \$	- \$ -	s -	\$	28 \$	107	43%	\$630	\$	419 \$	180	
43	CCB-7.2	McMurdo Gulch Reclamation (Castle Rock) 19/20 Project	Design in 2019, Construction in 2020	Stream Reclamation (L = $2,000$ lf)	0.38	mi			100	lbs/mi	38	lbs/yr	Storm Flow	90%	34	lbs/year	\$ 1,67	7 \$	- \$ -	s -		17 \$	107	25%	\$420	\$ 3,	,127 \$	783	2, 3
44	CCB-7.2 *	McMurdo Gulch Reclamation (Castle Rock) 19/20 Project	Design in 2019, Construction in 2020	Stream Reclamation ($L = 2,000 \text{ lf}$)	0.38	mi			100	lbs/mi	38	lbs/yr	Storm Flow	90%	34	lbs/year	\$ 1,15	6 \$	- \$ -	\$ -	\$	1 \$	63	25%	\$289	\$ 1,	,846 \$	462	2, 3, 7

W	Х	Y	Z	AA	AB	AC	AD

	A	В	С	D	E	F	G	Н	I J	K	L	M	N	0	Р		2	R	S	Т		U	V	W	X		·	Z	AA	AB	AC	AD
1																	UTHORITY															
2								TA	BLE 1 ·	- SUN	<i>IMAR</i>							TION F.	<i>ACILITIE</i>	S												
3												REVIS	SIONS	FOR	2024 -	2033	CIP															
4		Date:	November 2, 2023																													
5		Color Code:	Blue:	Project Completed																												
6			Green:	Planned for design/construction v		*	· ·	1 A A A A A A A A A A A A A A A A A A A																								
_			*	Project updated based on best av spreadsheet. O&M costs were a																			uch as stre	am length wa	as adjusted l	based on	information	noted in	comments on			
			#	Site specific analysis used for pro	5			5	that were	old/coll	isti ucteu 1	ii pilases, we	separa	ieu into t	nose pha	1505 10 140	intate aujust	ment to 20	25 COSIS OII FI	CI'S 101 W	Q Analy	515.										
8			"	Projects highlighted so that origin	5			0	ted project	inform	ation (der	oted with *)																				
9	CCB-7.3	McMurdo Gulch Reclamation	Design in 2020, Construction 2021	Stream Reclamation	0.70	mi		•	100 lbs/r		, ì	Storm Flow	1	63	lbs/year	\$	2,460 \$		\$	¢	s	25 \$	156	25%	\$615	s	2,480 \$	620	2, 3			
45		(Castle Rock) 20/21/22 Project McMurdo Gulch Reclamation	<u> </u>	(L = 3,700 lf) Stream Reclamation						_						-	-					25 \$					-					
46	CCB-7.3 *	(Castle Rock) 20/21/22 Project	Design in 2020, Construction 2021	(L = 3,700 lf)	0.70	mi			100 lbs/r	ni 70) lbs/yr	Storm Flow	90%	63	lbs/year	\$	1,940 \$	-	s -	\$	- \$	1 \$	105	24%	\$466	\$	1,664 \$	400	2, 3, 7			
	CCB-12	Bowtie Property PRF	Purchase completed 2003	Stabilize confluence (Ph I) and	22	sq mi	2-year flood	300 af	500 mg/l/	on 95	lbahr	base flow and minor	70% pone 65%		lbs/year	¢	826 \$	300	\$ 63	s	1.8 \$	6 5	70	100%	\$826	¢	299 \$	299	2			
47	CCB-12	Bowne Property PKP	Furchase completed 2005	construct sediment pond (Ph 2)	22	sqiiii	2-year noou	500 ai	500 mg/1/	01 85	105/y1	flood	wetlands	255	ios/year	æ	820 3	500	\$ 05	3	1.0 5	0 3	70	10070	3820	æ	233 3	299	2			
	CCB-13.1	Cottonwood\Peoria Wetlands Pond	Completed 2003. Restorative	Joint funded project with UDFCD,	8.30	sq mi						base and	measured	1 363	lbs/year	\$	1,636 \$	-	s -	s	- s	5 \$	93	12%	\$196	\$	255 \$	31	2			
48		Cottonwood Stream Reclamation in	maintenance required in 2009 Phase I completed in 2004. Phase II	GWV, Arapahoe County 11,600 lf of stream reclamation from								flood flows base and	see																			
49	CCB-13.2	CCSP	completed June 2008 (Ref 2)	Peoria to Perimeter Rd. Pond	2.20	mi			100 lbs/r	ni 220	0 lbs/yr	flood flows	separate calcs	730	lbs/year	\$	2,200 \$	-	s -	\$	- \$	55 \$	173	100%	\$2,200	\$	237 \$	237	2			
50	CCB-13.3	Cottonwood Creek Stream Stabilization at Easter Avenue	Authority contributed \$338,000 for construction in 2010.	2,600 lf of stream reclamation from Easter Ave to Briarwood Ave	0.49	mi			100 lbs/r	ni 49	lbs/yr	Storm Flow	90%	44	lbs/year	\$	1,350 \$	-	s -	\$	- \$	1 \$	73	25%	\$338	\$	1,655 \$	414	2			
	CCB-13.4	Peoria Trib B/Airport East and West	Cottonwood Creek Master Planned Improvements. Ponds combined	Combined existing detention ponds and	0.35	sq mi			400 lbs/s	^ I 14(0 lbs/vr	Base and	40%	56	lbs/yr	s	523 \$	_	s -	s	- \$	- \$	28	25%	\$131	s	500 \$	125				
51		Pond (Outfall C-1)	into one.	provided EURV	0.55				mi mi		- 100/ yr	storm flow			100, 91				-	-			20	20.00	0.01	¥						
	CCB-17.2	Reservoir Shoreline Stabilization Mountain Loop Trail	Scheduled for construction beginning in 2012	CCSP Recreation sites: Mountain, Lake and Cottonwood Creek Loops										54	lbs/yr	\$	1,131 \$	-	\$ -	\$	- s	5 \$	66	100%	\$1,131	\$	1,215 \$	1,215	1, 16			
52		West Boat Ramp Parking Lot WQ		(2,300 ft of shoreline) Provide water quality treatment of		ac prkg				_	_			+ +																		
53	CCB-17.3	Improvements	Final design completed in 2012	parking lot runoff.	3.43	lot				3	lbs/yr	parking lot	70%	2	lbs/yr	\$	330 \$	-	\$ -	\$	- \$	1 \$	19	100%	\$330	\$	8,903 \$	8,903	1			
54	CCB-17.4	East Boat Ramp Shoreline Stabilization Phase II	Identified during 2012 annual PRF inspection	105 lf of bank stabilization	105	lf	0.1 cy/yr/ft		0.14 lbs/	lf 14.	7 lbs/yr	bank erosior	n 80%	12	lbs/yr	\$	91 \$	-	\$ -	\$	- \$	2 \$	7	100%	\$91	\$	585 \$	585	1, 16			
55	CCB-17.5	East Shade Shelter Shoreline Stabilization Phase II	Identified during 2012 annual PRF inspection	20 lf of bank stabilization	20	lf	0.1 cy/yr/ft		0.14 lbs/	lf 2.8	3 lbs/yr	bank erosion	n 80%	2	lbs/yr	\$	18 \$	-	\$ -	\$	- \$	- \$	1	100%	\$18	\$	431 \$	431	1, 16			
56	CCB-20.1	Detention Pond Retrofit Program - McMurdo Gulch	Phase 1 - McMurdo Gulch	Modify existing ponds to meet current standards for WQ	1	Each			0.40 lbs/T Acr	04	4 lbs/yr	Residential		9 1	lbs/pond/yı	т \$	60 \$	-	s -	\$	- \$	0 \$	4	100%	\$60	\$	396 \$	396	1, 17			
57	CCB-222	Happy Canyon Creek Upstream of I- 25 (MHFD)	Requested in 2020	3000 lf of stream reclamation	0.57	mi			100 lbs/r	ni 57	lbs/yr	Storm Flow	90%	51	lbs/year	\$	5,441 \$	-	\$ -	\$	- \$	54 \$	346	9%	\$500	\$	6,765 \$	622	2, 3			
58	CCB-222*	Happy Canyon Creek Upstream of I- 25 (MHFD)	Requested in 2020	3000 lf of stream reclamation	0.57	mi			100 lbs/r	ni 57	lbs/yr	Storm Flow	90%	51	lbs/year	\$	4,021 \$	-	\$ -	\$	- \$	1 \$	216	9%	\$362	\$	4,232 \$	381	2, 3, 7			

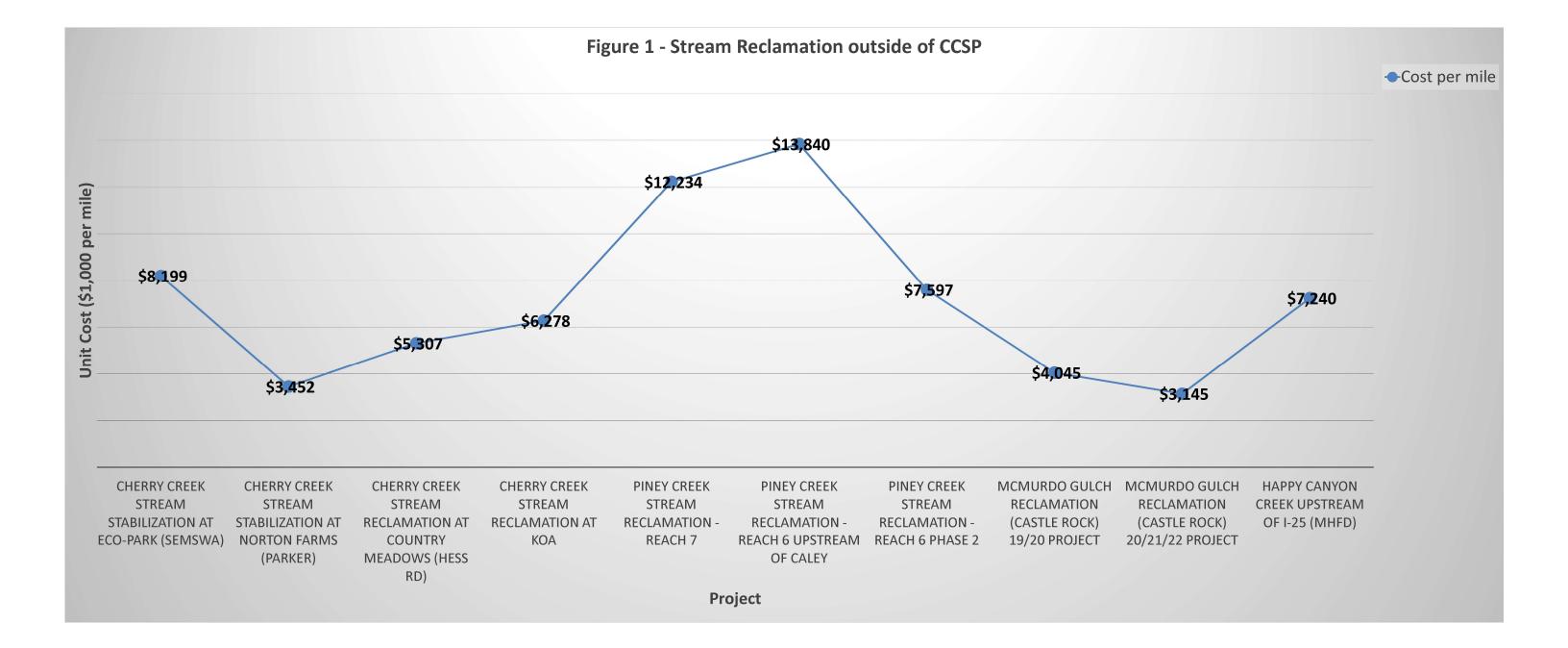
А	В	С	D	E	F	G	Н	I J	К				0	Р	Q		R	S	Т	U	V		W	х	Y	Z	AA	A	В	AC	AD
1							T	ABLE 1	SUM	CHERRY (MARY OF				-			тү С TION FA	CILITIES													
3														2024 - 2																	
4	Date:	November 2, 2023																													
5	Color Code:	Blue: Green:	Project Completed Planned for design/construction v	vithin 10-	vear CIP	(see Table	2)																								
6		*	Project updated based on best ava	ailable inf	formation	n. Projects l	have best acc														on such as	stream le	ngth was	adjusted ba	sed on infor	mation noted	in comments on				
7		#	spreadsheet. O&M costs were ad Site specific analysis used for pro-				5	s that were bid	/constru	cted in phases	s, were se	eparated i	into the	ose phase	s to facilita	ite adjus	stment to 2023 of	costs on PRFs i	for WQ Ar	nalysis.											
9			Projects highlighted so that origin	-			-	ated project ir	formatio	on (denoted w	ith *).																				
Proj. 60 Designation	Project Title	Status	Description		De	sign Basis			Projected	l Loads		Project	ted Trea	atment							Cost Estim (1000\$)								Unit Cos (\$/pound		Note
			PRF Type	Quantity	Unit	Rate	Volume	Rate	To	otal So	urce R	emoval	lbs R	Removed	Capital fi 2023 to 2	032	tal Project Cost I odate to 2023 \$	Design in 2023	Capital in 2023 \$	Land Acquisition	Water Augmen		apital place9	O&M	Annual Cost @ 4%	t CCBWQA Share	Share	w/o o	cost	w/cost sharing	
61 62 (1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		(10) (1	1)	(12)	(13)	(14)	CIP (15)	-	(16)	(17)	(18)	(19)	(20)		(21)	(22)	(23)	(%) (24)	(\$) (25)	(20	-	(27)	(28)
CCB-5.4	Cherry Creek Stream Stabilization at Main Street (Parker)	Conceptual design by UDFCD	Local stream stabilization ($L = 4000 \text{ ft}$)	0.76	mi			100 lbs/mi	76	lbs/yr Storn	n Flow	90%	68	lbs/year	\$ 1	,776 \$	5,600	\$ 840 \$	4,760	s -	s	- \$	- 5	\$ 2	2 \$ 302	2 23%	\$1,280	\$	4,430 \$	5 1,013	2, 3, 7
CCB-5.6	Cherry Creek Stream Stabilization at Lincoln Avenue (Parker)	Conceptual design by UDFCD	Local stream stabilization ($L = 2350 \text{ ft}$)	0.45	mi			100 lbs/mi	45	lbs/yr Storn	n Flow	90%	40	lbs/year	\$ 1	,447 \$	3,290	\$ 494 \$	2,797	s -	s	- \$	- 5	\$ 1	\$ 177	7 23%	\$755	\$	4,425 \$	5 1,016	2, 3, 7
CCB-5.14C	Cherry Creek Stream Reclamation at Arapahoe Rd Valley Country Club to Soccer Fields, Reaches 3 to 4	Projects with UDFCD, SEMSWA, and Aurora. Phases started in 2010.	Local stream stabilization (L = 5167 ft on Cherry Creek)	0.98	mi			100 lbs/mi	98	lbs/yr Storn	1 Flow	90%	88	lbs/year	\$ 5	,287 \$	10,600	\$ 1,590 \$	9,010	s -	\$	- \$	- 5	\$ 2	2 \$ 570) 16%	\$1,665	s	6,462 \$	5 1,015	2, 3, 7
CCB-5.16A	Cherry Creek Stream Reclamation - Reservoir to Lake View Drive (Reach 1 in Muller's 2022 Stream Assessment Report)	Project w/in CCSP	Local stream stabilization (L =5400 ft,)	1.02	mi			100 lbs/mi	102.3	lbs/yr Storn	1 Flow	90%	92	lbs/year	\$ 6	,842 \$	11,846	\$ 1,777 \$	10,069	s -	\$	- \$	- 3	\$ 6	5 \$ 641	100%	\$11,846	\$	6,960 \$	5 6,960	2, 3, 6
CCB-5.16A#	Cherry Creek Stream Reclamation - Reservoir to Lake View Drive (Reach 1 in Muller's 2022 Stream Assessment Report)	Project w/in CCSP	Local stream stabilization (L =5400 ft,)	1.02	mi]	1684	lbs/year	\$ 6	,842 \$	11,846	\$ 1,777 \$	10,069	s -	\$	- \$	- 5	6 6	5 \$ 641	100%	\$11,846	\$	380 \$	380	2, 3, 6, 10
CCB-5.16B	Cherry Creek Stream Reclamation - Lake View Drive to North Side of DOLA (Reach 2 in Muller's 2022 Stream Assessment Report)	Project w/in CCSP	Local stream stabilization (L =4400 ft,)	0.83	mi			100 lbs/mi	83.3	lbs/yr Storn	1 Flow	90%	75	lbs/year	\$5	,612 \$	7,920	\$ 1,188 \$	6,732	s -	s	- \$	- 5	6 6	5 \$ 430) 100%	\$7,920	\$	5,738 \$	5,738	2, 3, 6
CCB-5.16C 69	Cherry Creek Stream Reclamation - (Reach 3 in Muller's 2022 Stream Assessment Report)	Projects with UDFCD, SEMSWA, and Aurora. Phases started in 2010.	Local stream stabilization (Cherry Creek Reach 3 L =6200 ft)	1.17	mi			100 lbs/mi	117	lbs/yr Storn	1 Flow	90%	106	lbs/year	\$ 10	,054 \$	11,160	\$ 1,674 \$	9,486	\$ -	s	- \$	- 5	6 1	\$ 599	9 100%	\$11,160	\$	5,667 \$	5,667	2, 3, 6
CCB-5.16C #	Cherry Creek Stream Reclamation - (Reach 3 in Muller's 2022 Stream Assessment Report)	Projects with UDFCD, SEMSWA, and Aurora. Phases started in 2010.	Local stream stabilization (Cherry Creek Reach 3 L =6200 ft)	1.17	mi							1	1963	lbs/year	\$ 10	,054 \$	11,160	\$ 1,674 \$	9,486	s -	\$	- \$	- 5	5 1	1 \$ 599	0 100%	\$11,160	\$	305 \$	305	2, 3, 6, 10
71 CCB-5.17.2	Cherry Creek Stream Reclamation U/S Scott Road	Project requested by Douglas County and UDFCD in 2019	Local stream stabilization ($L = 4300 \text{ ft}$)	0.81	mi			100 lbs/mi	81	lbs/yr Storn	n Flow	90%	73	lbs/year	\$ 5	,477 \$	5,477	\$ 822 \$	4,655	s -	\$	- \$	- 5	\$ 2	2 \$ 295	5 24%	\$1,309	\$	4,031 \$	5 963	2, 3, 7
CCB-6.5	Piney Creek - Cherry Creek to Parker Road, Reaches 1 to 2 (SEMSWA)	Requested in 2020	2900 lf of stream reclamation	0.55	mi			100 lbs/mi	55	lbs/mi Storn	n Flow	90%	49	lbs/year	\$ 2	350 \$	4,060	\$ 609 \$	3,451	s -	\$	- \$	- 5	\$ 1	\$ 219	23%	\$930	\$	4,421 \$	5 1,013	2, 3, 7
CCB-6.6	Piney Creek south of Orchard Rd., Reaches 4 to 5 (SEMSWA)	Requested in 2020	3800 lf of stream reclamation	0.72	mi			100 lbs/mi	72	lbs/mi Storn	n Flow	90%	65	lbs/year	\$ 3	.000 \$	5,320	\$ 798 \$	4,522	\$ -	\$	- \$	- 5	\$ 1	\$ 286	5 23%	\$1,220	\$	4,416 \$	5 1,013	2, 3, 7
CCB-7.4	McMurdo Gulch Reclamation (Castle Rock) 22/23/24/25 Project	Design in 2022- 2023, Construction in 2024	Stream Reclamation (L = $6,550 \text{ lf}$)	1.24	mi			100 lbs/mi	124	lbs/yr Storn	n Flow	90%	112	lbs/year	\$ 3	,298 \$	5,162	\$ 774 \$	4,388	s -	\$	- \$	- 5	S 2	2 \$ 279	25%	\$1,292	\$	1,878 \$	s 470	2, 3, 7
CCB-13.3.1A	Cottonwood Creek Catail Harvesting from Reservoir to Peoria Street~	Pilot Project - Odd Years Harvest Left Bank	1.7 Acres of Cattail Harvesting	2.90	mi			lbs/mi	30	lbs/yr Storn	n Flow	100%	59	lbs/year	\$	60 \$	90	\$ - \$	90	s -	\$	- \$	-	s -	\$ 5	5 100%	\$90	\$	1,525 \$	5 1,525	4
CCB-13.3.1B	Cottonwood Creek Cattail Harvesting from Reservoir to Peoria Street~ Cottonwood Creek Tributary -	Pilot Project - Even Years Harvest Right Bank	2.0 Acres of Cattail Harvesting	2.90	mi			lbs/mi	237	lbs/yr Storn		100%	60	lbs/year	\$	60 \$		s - s		s -	s	- \$	-	\$ -	\$ 5	5 100%	\$90		1,500 \$,	4
77 CCB-13.5.3	Shooting Area Tributary (CCSP) Cottonwood Creek and Tributary C	Requested in 2020	600 lf of stream reclamation	0.11	mi			100 lbs/mi	11	lbs/yr Storn		90%	10	lbs/year	-	300 \$	720			\$ -	\$	- \$	-		\$ 40	25%	\$180		3,870 \$		2, 3, 6
78 CCB-13.5.4	(IWSD)	Requested in 2020	2080 lf of stream reclamation Partner with others to purchase	0.39	mi			100 lbs/mi	39	lbs/yr Storn	n Flow	90%	35	lbs/year	\$ 1	,664 \$	2,496	\$ 374 \$	2,122	\$ -	\$	- \$	-	1	\$ 135	5 25%	\$624	\$	3,800 \$	5 950	2, 3, 7
CCB-16	Stream Corridor Preservation	No projects identified	property or conservation easements along Cherry Creek												\$	100 \$	100	s - s	100						\$ 5	5 100%	\$100				1
80 CCB-17.2.1	Mountain and Lake Loop - 2021 Shoreline Maintenance	Identified during 2020 annual PRF observation	45 lf of bank stabilization	45	lf	0.1 cy/yr/ft		0.14 lbs/lf	6.3	lbs/yr bank	erosion	80% :	5.04	lbs/yr	\$	24 \$	65	\$ - \$	65	\$ -	\$	- \$	- 5	5 1	\$ 4	100%	\$65	\$	889 \$	5 889	1, 16, 22
81 CCB-17.5.1	East Shade Shelter Shoreline Stabilization Phase III	Identified during 2014 annual PRF inspection	400 lf of bank stabilization	400	lf	0.1 cy/yr/ft		0.14 lbs/lf	56.0	lbs/yr bank	erosion	80%	44.8	lbs/yr	\$	906 \$	975	\$ 184 \$	791	\$ -	\$	- \$	- 5	5 1	\$ 53	86%	\$842	\$	1,188 \$	5 1,026	1, 16, 22
82 CCB-17.7	Tower Loop Shoreline Stabilization Phase II	Identified during 2014 annual PRF inspection	700 lf of bank stabilization	700	lf	0.1 cy/yr/ft		0.14 lbs/lf	98.0	lbs/yr bank	erosion	80%	78.4	lbs/yr	\$ 1	,076 \$	1,035	\$ 155 \$	880	\$ -	\$	- \$	- 5	5 1	\$ 56	5 100%	\$1,035	\$	720 \$	5 720	1, 16, 22
CCB-21.1 83	Lone Tree Creek in CCSP downstream of Pond (CCBWQA Only)	Identified in 2014. Request from Arapahoe County Open Space. Request from Centennial for	500 lf of stream reclamation from CCSP Boundary to Cottonwood Creek	0.09	mi			100 lbs/mi	9	lbs/yr Storn	n Flow	90%	9	lbs/yr	\$	340 \$	600	\$ 90 \$	510	s -	s	- \$	- 5	\$ 1	\$ 33	3 100%	\$600	\$ 3,	,889.15 \$	3,889	2, 3, 6
CCB-21.3	Lone Tree Creek in CCSP upstream of Pond (Centennial Trail Portion)	Request from Centennial for Participation in Stream Reclamaation portion of Trail Project.	710 If of stream reclamation between CCSP Boundary and Windmill Creek Loop Trail	0.13	mi			100 lbs/mi	13	lbs/yr Storn	n Flow	90%	12	lbs/yr	\$	448 \$	448	s - s	448	\$ -	\$	- \$	- 5	5 1	\$ 25	5 25%	\$112	\$ 2,	,065.93 \$	5 516	2, 3, 6
CCB-22.1	Happy Canyon Creek at Jordan Road (SEMSWA)	Requested in 2020	2,500 lf of stream reclamation, project extended another 2000 feet in 2022	0.85	mi			100 lbs/mi	85	lbs/yr Storn	n Flow	90%	77	lbs/year	\$ 2	,731 \$	6,300	\$ 945 \$	5,355	s -	\$	- \$	- 5	5 2	2 \$ 340	23%	\$1,445	\$	4,427 \$	5 1,015	2, 3, 7
CCB-23.1	Dove Creek Otero Avenue to U/S of Pond D-1 (SEMSWA)	Requested in 2020	2700 lf of stream reclamation (broken into 2 phases, see 23.2A and 23.2 B)	0.51	mi			100 lbs/mi	51	lbs/yr Storn	n Flow	90%	46	lbs/year		\$	4,960	s - s	4,960	\$ -	\$	- \$	- 5	\$ 1	\$ 267	7 16%	\$778	\$	5,796 \$	5 909	2, 3, 7

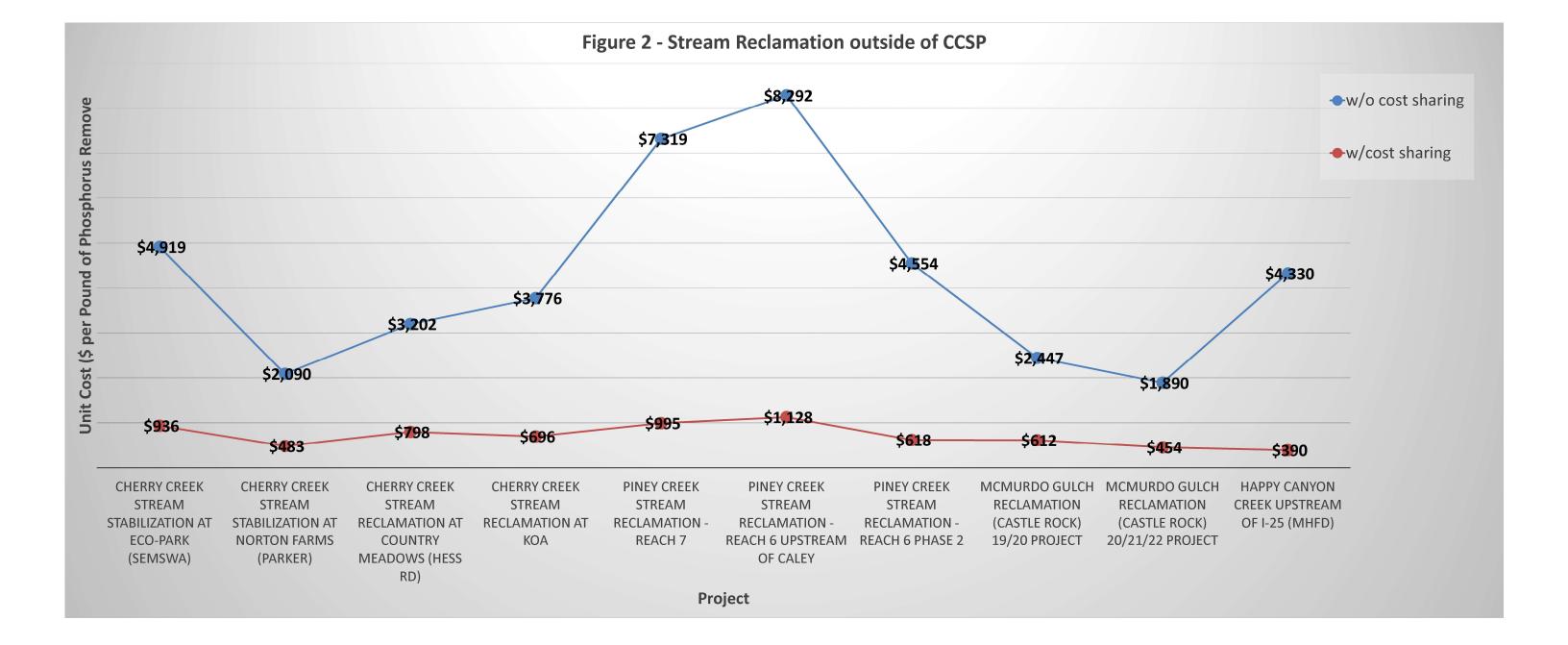
W	Х	Y	Z	AA	AB	AC	AD

A	В	С	D	E	F	G	н		J	К	L	М	N	0	Р	Q		R	S	Т		U	V	/	W	Х	Y		Z	AA
							Tz	ABLE	1 - Sl			Y OF PO	DTENT	TAL P	TER QUAL POLLUT 2024 - 2	ANT F	RED	DRITY DUCTION FA	CILITIE	ES .										
	Date:	November 2, 2023																												
	Color Code:	Blue:	Project Completed																											
		Green:	Planned for design/construction v	vithin 10-v	vear CIP	o (see Table	2)																							
			Project updated based on best av					counting	informa	ation th	hat incl	udes total p	roject cos	sts of des	sign, constru	uction, co	onstruc	ction managemen	, and permit	clearance.	Other	informat	ion such	as strea	um length wa	s adjusted l	ased on	informa	ation noted	in comments on
		*	spreadsheet. O&M costs were ad																						Ũ	5				
		#	Site specific analysis used for pro-	oject to sup	pport CO	CBWQA's f	unding level																							
			Projects highlighted so that origin	nal project	t informa	ation compar	red with upda	ated proj	ject info	ormatic	on (den	oted with *)).																	
Proj.	Project Title	Status	Description		De	esign Basis			Pr	rojected	l Loads		Pro	jected Tr	eatment						Estimate 000S)	•						Unit (\$/poi		Note
Designation					TT 1:			Rat		. т.	otal	6		lbs				x 4.4	Water	Capital			Annual	Cost @	CCBWQA	CCBWQA	w/o c	ost		-
			PRF Type	Quantity	Unit	Rate	Volume					Source	Remova	ved		Capit		Land Acquisition	Augment ⁸	Replace	´	O&M	4%		Share (%)	Share (\$)	shari	ng	w/cost sharin	-
(1) The projects listed below are	(2)	(3) to be further evaluated and have	(4) costs updated in with future CIP effort		(5)	(6)	(7)	(8))	(9	9)	(10)	(11)	(12)	(13)	(14))	(15)	(16)	(17)		(18)	(19	9)	(20)	(21)	(22	.)	(23)	(24)
			Construct limestone filter bed				10.7		lbs/sq			Base and											1							
CCB-8 Limestone	Filter Enhancement	Specific project not identified	downstream of retention pond	1.0	sq mi	n/a	af/year/sq mile	427	mi	427	lbs/yr	storm flow	20%	85	lbs/year/mi2	\$	943		\$ -	\$	595 \$		\$	83	43%	\$405	\$	977 \$	\$ 42	0
			Construct 2 MGD AWT plant on				inne					Base flow		+ +													-			
CCB-11 Advanced	Water Treatment Plant	Conceptual design prepared	Cottonwood Creek to treat Cherry Creek and Cottonwood Creek flows	3	cfs	2-MGD	2260	0.21	mg/l	1272	lbs/yr		90%	1145	lbs/year	\$ 4	4,593	unknown	unknown		\$	6	•		100%	\$4,593	s	-	\$	- 11
			(0.21-mg/ influent, 0.03 mg/l disch)						-			groundwate	r																	
		Identified during 2012 annual PRF	400 lf of bank stabilization	400	lf	0.1 cy/yr/ft		0.14	lbs/lf	56.0	lbs/yr	bank erosior	n 80%	44.8	lbs/yr	\$	350	s -	s -	\$	- \$	4	4 S	23	100%	\$350	\$	508 \$	5 50	8 1, 16
West Shade	on Phase III le Shelter Shoreline	inspection Identified initially in 2006. UCD		1400	lf			0.14	11 110	104.0			000/	170			70.4	<u>_</u>	<u>_</u>					40	(50)	0.450		222		4 01 00
CCB-17.6 Stabilization		Student Project w/WPR in 2013	1,400 lf of bank stabilization	1400	lf	0.1 cy/yr/ft		0.14	lbs/lf	196.0	lbs/yr	bank erosior	n 80%	179	lbs/yr	\$	704	5 -	\$ -	\$	- 5	-	2 8	40	65%	\$458	3	222 \$	\$ 14	4 21, 22
CCB-17.8 Dixon Grov Phase II	we Shoreline Stabilization	Identified during 2019 annual PRF inspection	200 lf of bank stabilization	200	lf	0.1 cy/yr/ft		0.14	lbs/lf	28.0	lbs/yr	bank erosior	n 80%	22.4	lbs/yr	\$	235	\$ -	\$ -	\$	- \$		\$	14	100%	\$235	\$	607 \$	6 60	7 1, 16, 22
CCB-18 OWTS Sev	wer Service	No action to date	Provide Sewer Service for OWTS Areas			To Be D	Determined		То	Be Det	ermined		То	o Be Dete	rmined			To Be Determined							100%	\$0	Т	o Be De	termined	1
CCB-19 Non-point I	Pollutant Management	No action to date	Assist agricultural contributors to water quality impact			To Be D	Determined		То	Be Det	ermined		To	o Be Dete	rmined	\$	100	\$ -	\$ -	\$	- \$	-	\$	5	100%	\$100	Т	o Be Det	termined	1
at 4% inter (B) All projects requiremen 2024 CIP NOTES: 1. Assume 2. Augmer 3. Phosphe 4. See 202 5. Pond upp ponds all 6. Updated 7. Updated 8. Water or 9. Present 10. Benefit 11. Land ac influenc 12. Total P 16. Benefit 16. Benefit	rest rate. s identified provide for additi- tits, unless noted otherwise. ed that augmentation for cons- ntation for naturally establishs orus Estimated based on Inter 20 Cattail Harvesting Pilot Pro- dates to bring up to current si ready exist. 10 QeM Cost to \$6k per mile (10 QeM Cost to \$2k per mile second to the second second second worth of capital replacement it listed in Muller's Cherry Cru- cquisition and water augment ced scope of project.	onal phosphorus immobilization bey sumptive use not required ed wetlands not required (assumption rim Stream Reclamation Paper oject Memo. Phosphorus estimated tandards and to facilitate maintenance (increased cost to account for higher with a minimum of \$1k \$ 6,500 eek Stream and Water Quality Assess tation not defined. CWSD\ACWW2 rom laboratory sediment samples & er shoreline projects and estimates	0.053577 ond minimum n) based on SEMSWA 2020 Data. e. No phosphorus calculation provided, si public use for projects in CCSP)with a m per acre foot ssment, Reservoir to State Park Boundary, A JWPP project Stantec Geomorphic Study BANCS analy	ninimum of \$ 7, November 2														REFERENCES 1. Muller Eng 2003, 2. Muller Eng 2003, 3. AMEC 2005, Dra 4. AMEC 2006, Rec Reservoir Destratific 5. Tetra Tech Augus wia Sediment Trap. 6 WERF 2000, Pho Approach to Achieviv 7. Ruzzo, W.P Septe Reduction from St 8. Ruzzo, W.P Septe Augmentation Req 9. TetraTech Decem 10. Brown and Cald Wetland Assess 11. PBSJ October 21 12. Brown and Cald 13. CCBWQA TAC	Feasibility Eva ft Feasibility R ommendations, j attion Project. 2006. Phosph sphorus Credit gg Water Qualit neber 5, 2003. (eam Reclamati ember 21, 2006 uirements. Ser 2006. Desi vell Feb 2007. vent 006. Draft McN vell 2010. Che	luation for C port Cherry for Prepurch orus Estimau Trading in th y Benefits. Cherry Creek on Cottonwoo gn of Cherry Shop Creek furdo Gulch rry Creek Sta Stream Rec.	ottonwood Creek Ra ase of Ja ees in Chu ee Cherry Corridon d Creek Sa Wetlands Major D eeam Rec lamation	d Creek S 22ervoir D mor Equip 27rry Creek 9 Creek Ba Master P Reclamation 20 Pollutant rainagewa lamation Water Qu	tream Stab estratificat wment for C and Cost j sin: An Ini an-Estimat on - Water sin and Sta Reduction ty Master I ti Shop Cre ality Benef	vilization A tion Therry Cr for Remornovative te of Phos Rights ream Stat Facility Plan eek Trail. ît Evaluai	Project eek val sphorus bilization. tion Interim S					

W	Х	Y	Z	AA	AB	AC	AD

	Α	В	С	D		E	Q		R		s	Т	-	U		\	/	V	v	>	<	Y		Z		AA		AB	<i>A</i>	AC	A	D		AE
1									CHE						-																			
2					TAL	BLE 2	- SUN	IMA	RY O	PF R	ECO	MM	EN	DED	PO	LLU	TAN	NT R	EDU	ICTI	ON	FACL	LIT	IES										
3									2024	- 20	33 I	BUD	GEI	Γ PR	OJE	CT	ION	S (1	000\$	5)														
4																																		
5	Color Code:		First year i	in 10-ye	ar CIP	2																												
6																																		
		Neversher 0, 2022					Residu			Duon						Prop		Prop		Prop		Propos		Proposed	P	Proposed		oposed		posed	Prop		20	24-2033
7		November 2, 2023					PRF Costs			Prop	osed 2	.024 D	uagei			20 Bud		20 Bud		20: Bud		2028 Budg		2029 Budg	et	2030 Budget		2031 Budget		032 dget	20 Bud		-	Total
	Project	Project Title	Total		-	uthority		0	Design	Cap	oital	Lar	nd	Tota	al	То	tal	То	tal	То	tal	Tota	I	Total		Total		Total	Т	otal	То	tal		Total
8 9 E	No. Budget Categ	ory - General		Portic	on i	Portion																												
10 E	Budget Categ	ory - Reservoir Projects																																
11	CCB-17.5.1	East Shade Shelter Shoreline Stabilization Phase III	\$ 975	\$8	342	86%	\$ 6	58 \$	-	\$	658	\$	-	\$	658	\$	-	\$	-	\$	-	\$	-	\$-	\$; -	\$	-	\$	-	\$	-	\$	658
12	CCB-17.7	Tower Loop Shoreline Stabilization Phase II	\$ 1,035	\$ 1,0	35	100%	\$ 1,0	35 \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-	\$; -	\$	-	\$	155	\$	880	\$	1,035
13 E	Budget Categ	ory - Stream Reclamation Projects																																
14	CCB-5.4	Cherry Creek Stream Reclamation at Main Street (Parker)	\$ 5,600	\$ 1,2	280	23%	\$ 1,2	30 \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	700	\$	580	\$-	\$; -	\$	-	\$	-	\$	-	\$	1,280
15	CCB-5.6	Cherry Creek Stream Stabilization at Lincoln Avenue (Parker)	\$ 3,290	\$ 7	'55	23%	\$ 7	55 \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-	\$	5 411	\$	344	\$	-	\$	-	\$	755
16		Soccer Fields, Reaches 3 to 4	\$ 10,600	\$ 1,6	655	16%	\$ 1,1	04 \$	-	\$	300	\$	-	\$	300	\$	340	\$	340	\$	124	\$	-	\$-	\$; -	\$	-	\$	-	\$	-	\$	1,104
17	CCB-5.16A	Cherry Creek - Reservoir to Lake View Drive Alternatives Analysis and Development of Preferred Alternative	\$ 438	\$ 4	38	100%	\$ 1	31 \$	181	\$	-	\$	-	\$	181	\$	-	\$	-	\$	-	\$	-	\$-	\$; -	\$	-	\$	-	\$	-	\$	181
18	CCB-5.16A, B, C	Cherry Creek all Reaches in CCSP	\$ 30,488	\$ -	-	0%	\$-	\$	-	\$	-	\$	-	\$	-	\$	770	\$	1,110	\$	225	\$	195	\$ 1,28	0\$	500	\$	1,190	\$	1,470	\$	910	\$	7,650
19		Piney Creek - Cherry Creek to Parker Road, Reaches 1 to 2 (SEMSWA)	\$ 4,060	\$9	930	23%	\$ 8	29 \$	39	\$	-	\$	-	\$	39	\$	25	\$	75	\$	150	\$	125	\$ 12	5\$	5 125	\$	125	\$	40	\$	-	\$	829
20		Piney Creek south of Orchard Rd., Reaches 4 to 5 (SEMSWA)	\$ 5,320	\$ 1,2	220	23%	\$ 1,2	20 \$	-	\$	75	\$	-	\$	75	\$	150	\$	235	\$	250	\$	250	\$ 26	0\$; -	\$	-	\$	-	\$	-	\$	1,220
21	CCB-7.4	McMurdo Gulch Reclamation (Castle Rock)	\$ 5,162	\$ 1,2	292	25%	\$ 1,1	21 \$	-	\$	-	\$ 1	,121	\$ 1 ,	,121	\$	-	\$	-	\$	-	\$	-	\$-	\$; -	\$	-	\$	-	\$	-	\$	1,121
22	CCB-13.5.3	Cottonwood Creek Tributary - Shooting Area Tributary (CCSP)	\$ 720	\$ 1	80	25%	\$ 1	30 \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	180	\$-	\$; -	\$	-	\$	-	\$	-	\$	180
23	CCB-13.5.4	Cottonwood Creek and Tributary C (IWSD)	\$ 2,496	\$6	624	25%	\$ 6	24 \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-	\$	624	\$	-	\$	-	\$	-	\$	624
24	CCB-21.1	Lone Tree Creek in CCSP downstream of Pond (CCBWQA Only)	\$ 600	\$ 6	600	100%	\$ 6	00 \$	120	\$	-	\$	-	\$	120	\$	480	\$	-	\$	-	\$	-	\$-	\$; -	\$	-	\$	-	\$	-	\$	600
25	CCB-21.3	Lone Tree Creek in CCSP upstream of Pond (Centennial Trail Portion) Happy Canyon Creek at Jordan Road	\$ 448		12	25%	\$ 1	12 \$	-	\$	112		-	\$	112		-	\$		\$	-	· ·	-	\$-	\$		\$	-	\$	-	\$	-	\$	112
26	CCB-22.1	(SEMSWA)	\$ 6,300	\$ 1,4	45	23%	\$ 1,2	64 \$	-	\$	50	\$	-	\$	50	\$	75	\$	75	\$	171	\$	170	\$ 17	0\$	5 170	\$	170	\$	170	\$	43	\$	1,264
		ory - PRF Water Quality/Wetland Ponds ory - PRF Preservation, Acquisition, Lea																							_		+							
	CCB-16	PRF Preservation, Acquisition, Lease of	\$ 1,000	\$ 10	000	100%	\$ 1,0	00 \$	_	\$	100	\$	-	\$	100	\$	100	\$	100	\$	100	\$	100	\$ 10	0 \$	5 100	\$	100	\$	100	\$	100	\$	1,000
29 30		Land or Water SUB-TOTALS	φ 1,000	φ 1,0		10070	ψ 1,0	Ψ		Ψ	100	Ψ			,756		1,940		1,935		1,720	-	600	-	-			1,929		1,935		1,933		19,613
31			1	1	I									,	,	+	.,	7		-	.,•	, <i>,</i> ,		- 1,00	- <u> </u>	.,	1 4	.,020	7	.,	+	.,	<u> </u>	


	Α	В	(С		D	E	Q	R	S	Т	U		V	W	X	Y	Z	AA		AB	AC	AD	AE
1							•		CHEF	RY CREE	EK BASIN V	WATE	R QUA	ALITY A	UTHORIT	Ý		•	•				•	
2						T.	ARLE 2.	- SUMN	IARY O	F RECO	OMMENI	DED	POL	LUTAN	TRED	UCTION	FACILI	TIES						
2						11		SUM										ILD						
3									2024	- 2033	BUDGEI	I PRO	OJE	CTION	5 (1000	(\$)								
4																								
			E:		. 10		ID																	
5	Color Code:		First	year in	n 10-	-year C	IP																	
6																								
								Residual					F	Proposed	Proposed	Proposed	Proposed	Dramagad	Propos	ed Pro	oposed	Proposed	Proposed	2024 2022
		November 2, 2023						PRF		Proposed	2024 Budget			2025	2026	2027	2028	Proposed 2029 Budget	2030		2031	2032	2033	2024-2033 Total
7								Costs						Budget	Budget	Budget	Budget	2029 Budge	Budge	et B	Budget	Budget	Budget	TOLAI
8	Project No.	Project Title	Тс	otal		hority rtion	Authority Portion		Design	Capital	Land	Tota	al	Total	Total	Total	Total	Total	Total	.	Total	Total	Total	Total
	NO.	OPERATIONS AND			10		TORION				ļļ.													
32		MAINTENANCE																						
33		Routine Category																						
34		Reservoir Destratification	\$	400	\$	400	100%				<u> </u>	\$	40 \$	40	\$ 40	\$ 40	\$ 40	\$ 40	\$	40 \$	40	\$ 40	\$ 40	\$ 400
35		PRF Weed Control	<u>Ψ</u> \$	103	\$	103	100%					\$	13 \$			\$ 10				10 \$	10			
36			\$	45		45	100%					\$	5 \$						\$	5 \$	5			\$ 50
37		PRF Mowing	\$	50	\$	45	100%					\$	5 \$						\$	5 \$	5			\$ 50
38		SUB-TOTAL	\$	598	\$	593						\$	63 \$							60 \$	60			
39		Operations Category																						
40		RDS Utilities	\$	720	\$	720	100%					\$	72 \$	72	\$ 72	\$ 72	\$ 72	\$ 72	\$	72 \$	72	\$ 72	\$ 72	\$ 720
41	0 - 2	RDS Service Plan	\$	172	\$	172	100%					\$	13 \$			\$ 16				19 \$	20			
42		PRF Emergency Repairs	\$	-	\$	-	100%					\$	- \$		\$-	7	\$-	\$-		- \$		\$-	\$-	
43		Meteorological Station	\$	30		30	100%					\$	3\$						\$	3\$	3			\$ 30
44			\$	922	\$	922						\$	88 \$	89	\$ 90	\$ 91	\$ 92	\$ 93	\$	94 \$	95	\$95	\$ 95	\$ 922
45		Restorative Category																						
46			\$	18		18	100%					\$	2 \$						\$	2 \$	2			\$ 20
47		Fence Repair	\$	72	\$	72	100%					\$	8\$	8	\$8	\$ 8	\$8	\$ 8	\$	8\$	8	\$8	\$8	\$ 80
48	OM -	Shoreline / Bank Restoration	<u>^</u>	4 755	<u>^</u>	4 755	4000/				├	•		405	A 405	105	1 05				405	<u> </u>	0 105	\$ -
49 50		Average Annual Cost		1,755			100% 100%					\$	- \$	195	ə 195	\$ 195	\$ 195	\$ 195	\$ 1	95 \$	195	\$ 195	\$ 195	
50		Shop Creek Cottonwood Wetlands		<u>17</u> 31		17 31	100%				+ +	<u>\$</u> \$	17 31										<u> </u>	\$ 17 \$ 31
52		Tower Loop		3		31	100%					<u>ې</u> \$	3											\$ <u>31</u> \$ 3
53		East Shade Shelter	· ·	3		3	100%					\$ \$	3				+							\$ <u>3</u>
54		East Boat Ramp		16		16	100%					\$	16					1					1	\$ 16
		Mountain/Lake Loop Shoreline		65		65	100%					\$	65						1					\$ 65
55 56		Cherry Creek 12-mile		8	\$	8	100%					\$	8											\$8
57		5	\$	900	\$	900	100%					\$	90 \$				\$ 90			90 \$	90	\$ 90		
58			\$ 2	2,888	\$	2,888						\$	243 \$	295	\$ 295	\$ 295	\$ 295	\$ 295	\$ 2	295 \$	295	\$ 295	\$ 295	\$ 2,898
59		Rehabilitation Category																						
60	OM -						100%																	
61		SUB-TOTAL	\$	-	\$	-						\$	- \$	-	\$-	\$-	\$-	\$-	\$-	- \$	-	\$-	\$-	\$-
62																								
63		SUB-TOTAL O&M											394 \$							49 \$	450			
64		GRAND TOTAL										\$ 3,1	150 \$	\$ 2,384	\$ 2,380	\$ 2,166	\$ 2,047	\$ 2,383	\$ 2,3	79 \$	2,379	\$ 2,385	\$ 2,383	\$ 24,036


E F G H I J K L M N O P Q R S T U V W X Y CHERRY CREEK BASIN WATER QUALITY AUTHORITY TABLE 3 - SUMMARY OF 10 COMPLETED POLLUTANT REDUCTION FACILITIES FOR CONSIDERATION IN 2024 - 2033 CIP

ovember 2, 2023
Blue:

1	A	В	С	D	E	F	G	Н					M					-	R ALITY AUT					V	W	Х	Y	Z	AA	AB	AC		AD	AE	AF	AG
2										L	ABLE	E 3 - S	SUMMA						LUTANT 2024 - 20	<i>REDUCT</i> 33 CIP	TON FA	ICILIT	IES													
4 5 6 7		Date: Color Code:	November 2, 2023 Blue: *	Project Completed Corrected to reflect final project	informati	ion, see c	omments fo	or details																												
8	Proj.	rom Table 1. Project updated based on Project Title	best available information. Projects l Status	nave best accounting information that inclu Description	ides total pro		of design, cons	struction, const	Proje cted		nd permit	clearance	P	rmation su rojected `reatmen	ich as strea		Cost Estimat		nformation note	d in comments of	n spreadsheet	O&M costs	s were adj	justed to be sin	nilar cost baseli	ne. Projects that	WQ	Unit Cost		those phases to fac sted to 2023 \$ (1)		stment to 202	23 costs on Pl	2023 WQ U	Unit Cost	Note
9	Designation			PRF Type	Quantity	Unit	Rate	Volume	Loads		Total			t	lbs Remo		(1000\$) Capital	Land	d Acquisition	Water	Capital	0&	M A	.nnual Cost @	CCBWQA Share	CCBWQA Share	w/o cost	w/cost sharing	Bid	Ι	Constru	Cor	st per mile w	(\$/pou		_
10 11	(1)	(2)	(3)	(4)	· ·	(5)	(6)	(7)		(8)	(9)		(10)	(11)	ved (12)	(13)	(14a)		(15)	Augment ⁸ (16)	Replace ⁹ (17)	(18		4% (19)	(%) (20)	(\$) (21)	sharing (22)	(23)	Date		Co	st				(24)
12	CCB-5.7*	Cherry Creek Stream Stabilization at Eco-Park (SEMSWA)	IGA w/SEMSWA for design in 2010 and construction in 2011/2012	Local stream stabilization 2 (L = 4850 ft)	0.92	mi			100	lbs/mi 92	2 lbs	s/yr Sto	orm Flow	90%	83	lbs/year	\$ 4,750	5 \$	-	s -	\$	- S	2 \$	\$ 257	19%	\$905	\$ 3,106	\$ 5	August 2012	1.58	s	7,531 \$	8,199 \$	\$ 4,919	\$ 936	5 1,2
12	CCB-5.11*	Cherry Creek Stream Stabilization at Norton Farms (Parker)	Conceptual design by UDFCD identified priority 3	Local stream stabilization (L = 2500 ft)	0.47	mi			100	lbs/mi 47	7 lbs	s/yr Sto	orm Flow	90%	43	lbs/year	\$ 1,103	\$	-	s -	\$	- s	1 \$	\$ 60	23%	\$255	\$ 1,410	\$ 3	26 January 2016	1.48	s	1,634 \$	3,452 \$	\$ 2,090	\$ 483	3 1, 2
14	CCB-5.15*	Cherry Creek Stream Reclamation at Country Meadows (Hess Rd)	Project by Town of Parker and Douglas County	Local stream stabilization (L = 4200 ft)	0.80	mi			100	lbs/mi 80	0 lbs	s/yr Sto	orm Flow	90%	72	lbs/year	\$ 2,788	s s	-	s -	\$	- s	2 \$	5 151	25%	\$695	\$ 2,114	\$ 5:	27 October 2014	1.51	s	4,222 \$	5,307 \$	\$ 3,202	\$ 798	8 1,2
15	CCB-5.17.1A*	Cherry Creek Stream Reclamation at KOA	Prelimiinary design completed 2019 Extension Requested by UDFCD and Parker in 2019		0.38	mi			100	lbs/mi 38	8 lbs	s/yr Sto	orm Flow	90%	34	lbs/year	\$ 1,800	5 \$	-	s -	\$	- s	1 \$	5 98	18%	\$333	\$ 2,868	\$ 5:	29 July 2020	1.32	s	2,378 \$	6,278 \$	\$ 3,776	\$ 696	5 1,2
16	CCB-6.4A *	Piney Creek Stream Reclamation - Reach 7	Request from UDFCD in 2014	Local stream stabilization (L = 2,340 ft)	0.44	mi			100	lbs/mi 44	4 lbs	s/mi Sto	orm Flow	90%	40	lbs/year	\$ 3,765	5 \$	-	s -	\$	- S	1 \$	\$ 203	14%	\$512	\$ 5,082	\$ 6	December 2016	1.44	s	5,422 \$	12,234 \$	\$ 7,319	\$ 995	5 1,2
17	CCB-6.4B.1 *	Piney Creek Stream Reclamation - Reach 6 upstream of Caley	Request from UDFCD in 2014	Local stream stabilization (L = 1,600 ft)	0.30	mi			100	lbs/mi 30	0 lbs	s/yr Sto	orm Flow	90%	27	lbs/year	\$ 2,896	5 \$	-	s -	\$	- \$	1 \$	\$ 156	14%	\$394	\$ 5,726	\$ 7'	79 November 2016	1.45	s	4,194 \$	13,840 \$	\$ 8,292	\$ 1,128	3 1, 2
18	CCB-6.4B.2 *	Piney Creek Stream Reclamation - Reach 6 Phase 2	Request from UDFCD in 2014	Local stream stabilization $(L = 2,580 \text{ ft})$	0.49	mi			100	lbs/mi 49	9 lbs	s/yr Sto	orm Flow	90%	44	lbs/year	\$ 2,659	s	-	s -	\$	- \$	1 \$	\$ 143	14%	\$361	\$ 3,262	\$ 4	November 2017	1.40	s	3,712 \$	7,597 \$	\$ 4,554	\$ 618	3 1, 2
19	CCB-7.2 *	McMurdo Gulch Reclamation (Castle Rock) 19/20 Project	Design in 2019, Construction in 2020	Stream Reclamation (L = 2,000 lf)	0.38	mi			100	lbs/mi 38	8 lbs	s/yr Sto	orm Flow	90%	34	lbs/year	\$ 1,150	5 \$		s -	\$	- \$	1 \$	\$ 63	25%	\$289	\$ 1,846	\$ 4	52 February 2020	1.33	\$	1,532 \$	4,045 \$	\$ 2,447	\$ 612	2 1, 2
20	CCB-7.3 *	McMurdo Gulch Reclamation (Castle Rock) 20/21/22 Project	Design in 2020, Construction 2021	Stream Reclamation (L = 3,700 lf)	0.70	mi			100	lbs/mi 70	0 lbs	s/yr Sto	orm Flow	90%	63	lbs/year	\$ 1,940	\$	-	s -	\$	- s	1 \$	\$ 105	24%	\$466	\$ 1,664	\$ 4	00 November 2021	1.14	s	2,204 \$	3,145 \$	\$ 1,890	\$ 454	4 1, 2
21	CCB-222*	Happy Canyon Creek Upstream of I- 25 (MHFD)	Requested in 2020	3000 lf of stream reclamation	0.57	mi			100	lbs/mi 57	7 lbs	s/yr Sto	orm Flow	90%	51	lbs/year	\$ 4,021	\$	-	s -	\$	- \$	1 \$	\$ 216	9%	\$362	\$ 4,232	\$ 3	31 May 2023	1.02	\$	4,114 \$	7,240 \$	\$ 4,330	\$ 390) 1,2
22																													\$/pound of phosphorus (w/ CCBWQA participation at historical limit of 25%)			Rec	Stream clamation st per mile	\$/pound of phosphorus (w/o cost sharing)		\$/pound of phosphorus (w/ CCBWQA participation at historical limit of 25%)
23 24 25 26 27 28				Minimum = Maximum = Mean = Median = Standard Deviation =	0.92 0.52 0.48																						\$ 1,410 \$ 5,726 \$ 2,975 \$ 2,987 \$ 1,477		\$ 35: \$ 1,43 \$ 744 \$ 744 \$ 369	4	\$ \$ \$	1,532 \$ 7,531 \$ 3,498 \$ 3,913 \$ 1,864 \$	3,145 \$ 13,840 \$ 6,771 \$ 6,759 \$ 3,581 \$	\$ 8,292 \$ 4,064 \$ 4,053		\$ 472 \$ 2,073 \$ 1,016 \$ 1,013 \$ 534
29 30 31 32 33		 Unit cost of phosphorus removal base at 4% interest rate. All projects identified provide for add requirements, unless noted otherwise. 	CRF = litional phosphorus immobilization be oted in comments in spreadsheet.	= 0.053577 yond minimum																																

(Z	AA	AB	AC	AD	AE	AF	AG

